7 research outputs found

    B&W Call Admission Control for Multimedia Communication Networks

    Get PDF
    In the multimedia communication networks providing quality of service (QoS), an interface between the signal processing systems and the communication systems is the call admission control (CAC) mechanism. Owing to the heterogeneous traffic produced by diverse signal processing systems in a multimedia communication network, the traditional CAC mechanism that used only one CAC algorithm can no longer satisfy the aim of QoS CAC: Utilize the network resource to the most best and still satisfy the QoS requirements of all connections. For satisfying the aim of QoS CAC in the multimedia communication networks, this study proposed an innovative CAC mechanism called black and white CAC (B&W CAC), which uses two CAC algorithms. One of them is called black CAC controller and is used for the traffic with specifications more uncertain, which is called black traffic here. The other is call white CAC controller and is for the traffic with clearer specifications, which is call white traffic. Because white traffic is simple, an equivalent bandwidth CAC is taken as the white CAC. On the other hand, a neural network CAC (NNCAC) is employed to be the black CAC to overcome the uncertainty of black traffic. Furthermore, owing to more parameters needed in a QoS CAC mechanism, a hierarchical NNCAC is proposed instead of the common used NNCAC. Besides to accommodate more parameters, a hierarchical NNCAC can keep the complexity low. The simulation results show the B&W CAC can obtain higher utilization and still meet the QoS requirements of traffic sources

    Design of a Quality of Service-Based Load Balancing Relay Selection Mechanism for Long Term Evolution-Advanced Systems

    Get PDF
    Serving as the fourth generation mobile communication standard, Long Term Evolution-Advanced provides various technical support to achieve high transmission speed. In particular, relays are an essential technology supported by the standard. Because a relay uses the resources within a communication system, user devices adopt the optimal relay method as the transmission pathway to optimize resource utilization. According to the quality of service required by various user applications, this paper fabricates a method for selecting the optimal load-balancing transmission pathway for user devices

    High-Efficiency Flicker-Free LED Driver with Soft-Switching Feature

    No full text
    A novel interleaved DC-DC buck converter is proposed to drive high-brightness light-emitting diodes (LEDs). The circuit configuration mainly consists of two buck converters, which are connected in parallel and use interleaved operation. Through interleaved operation, the power capability of the converter is doubled. Traditionally, two individual inductors are used in the two buck converters. The difference between conventional parallel-operated buck converters using two energy storage inductors and the proposed circuit is that the proposed circuit uses two small inductors and a coupled inductor that replace the two inductors of the buck converters. In this way, both buck converters can be designed to operate in discontinuous-current mode (DCM), even if the magnetizing inductance of the coupled inductor is large. Therefore, the freewheeling diodes can achieve zero-current switching off (ZCS). Applying the principle of conservation of magnetic flux, the magnetizing current is converted between the two windings of the coupled inductor. Because nearly constant magnetizing current continuously flows into the output, the output voltage ripple can be effectively reduced without the use of large-value electrolytic capacitors. In addition, each winding current can drop from positive to negative, and this reverse current can discharge the parasitic capacitor of the active switch to zero volts. In this way, the active switches can operate at zero-voltage switching on (ZVS), leading to low switching losses. A 180 W prototype LED driver was built and tested. Our experimental results show satisfactory performance

    Restoration of the Phenotype of Dedifferentiated Rabbit Chondrocytes by Sesquiterpene Farnesol

    No full text
    Osteoarthritis (OA) is a joint disorder characterized by the progressive degeneration of articular cartilage. The phenotype and metabolism behavior of chondrocytes plays crucial roles in maintaining articular cartilage function. Chondrocytes dedifferentiate and lose their cartilage phenotype after successive subcultures or inflammation and synthesize collagen I and X (COL I and COL X). Farnesol, a sesquiterpene compound, has an anti-inflammatory effect and promotes collagen synthesis. However, its potent restoration effects on differentiated chondrocytes have seldom been evaluated. The presented study investigated farnesol’s effect on phenotype restoration by examining collagen and glycosaminoglycan (GAG) synthesis from dedifferentiated chondrocytes. The results indicated that chondrocytes gradually dedifferentiated through cellular morphology change, reduced expressions of COL II and SOX9, increased the expression of COL X and diminished GAG synthesis during four passages of subcultures. Pure farnesol and hyaluronan-encapsulated farnesol nanoparticles promote COL II synthesis. GAG synthesis significantly increased 2.5-fold after a farnesol treatment of dedifferentiated chondrocytes, indicating the restoration of chondrocyte functions. In addition, farnesol drastically increased the synthesis of COL II (2.5-fold) and GAG (15-fold) on interleukin-1β-induced dedifferentiated chondrocytes. A significant reduction of COL I, COL X and proinflammatory cytokine prostaglandin E2 was observed. In summary, farnesol may serve as a therapeutic agent in OA treatment

    Effects of Homocysteine on white matter diffusion parameters in Alzheimer’s disease

    No full text
    Abstract Background The clinical features of Alzheimer’s disease (AD) are related to brain network degeneration, and hyperhomocysteinemia is related to greater white matter hyperintensities. We investigated the changes in four diffusion tensor imaging parameters in the white matter of patients with early stage AD, examined their associations with homocysteine level, and tested the clinical significance of the diffusion tensor imaging parameters and homocysteine level in correlation analysis with cognitive test scores. Methods We enrolled 132 patients with AD and analyzed white matter (WM) macrostructural changes using diffusion tensor neuroimaging parameters including fractional anisotropy (FA), mean diffusion (MD), axial diffusivity (axial-D) and radial diffusivity (RD). Two neuroimaging post-processing analyses were performed to provide complementary data. First, we calculated 11 major bundle microstructural integrities using a WM parcellation algorithm, and correlated them with serum homocysteine levels to explore whether the fiber bundles were affected by homocysteine. Second, we used tract-based spatial statistics to explore the anatomical regions associated with homocysteine levels. Changes in cognitive test scores caused by homocysteine served as the major outcome factor. Results The results suggested that homocysteine levels did not have a direct impact on cross-sectional cognitive test scores, but that they were inversely correlated with renal function, B12 and folate levels. Topographies showing independent correlations with homocysteine in FA and MD were more diffusely located compared to the posterior brain regions in axial-D and RD. In the association bundle analysis, homocysteine levels were significantly correlated with the four diffusion parameters even after correcting for confounders, however no association between homocysteine and WM to predict cognitive outcomes was established. Conclusions In our patients with AD, homocysteine levels were associated with renal dysfunction and decreased levels of vitamin B12 and folate, all of which require clinical attention as they may have been associated with impaired WM microstructural integrity and modulated cognitive performance in cross-sectional observations
    corecore